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Abstract

The benchmark problems in Category l(Internal

Propagation) of the third Computational Aeroacous-

tics (CAA) Workshop sponsored by NASA Glenn

Research Center are solved using the space-time
conservation element and solution element (CE/SE)

method. The first problem addresses the propaga-

tion of sound waves through a nearly choked tran-
sonic nozzle. The second one concerns shock-sound

interaction in a supersonic nozzle. A quasi 1-D

CE/SE Euler solver for a nonuniform mesh is de-
veloped and employed to solve both problems. Nu-

merical solutions are compared with the analytical

solution for both problems. It is demonstrated that

the CE/SE method is capable of soMng aeroacous-
tic problems with/without shock waves in a simple

way. Furthermore, the simple non-reflecting bound-

ary condition used in the CE/SE method which is

not. based on the characteristic theory works very
well.

1. Introduction

The method of space-time conservation element

and solution element (abbreviated as the CE/SE
method) is an innovative numerical method for solv-

ing conservation laws. It is different in both con-

cept and methodology from the well-established tra-
ditional methods such as the finite difference, finite

volume, finite element and spectral methods. It is

designed from a physicist's perspective to overcome

several key limitations of the traditional numerical
methods.

Simplicity, generality and accuracy are weighted

in the development of this method while the funda:
mental requirements are satisfied by the scheme. Its
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email: wangxy@aem.umn.edu
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salient properties are summarized briefly as follows.

First, the concepts of conservation element, and solu-
tion element are introduced to enforce both local and

global flux conservations in space and time instead

of in space only. Second, all the dependent variables

and their spatial derivatives are considered as indi-
vidual unknowns to be solved for simultaneously at

each grid point. Third, no approximation techniques
other than Taylor's series expansion, no monotonic-

ity constraints, and no characteristic-based tech-

niques are used in the design of the scheme. A de-

tailed description of this method and the accompa-
nied analysis can be found in [1-3].

A variety of numerical tests have been performed

previously to illustrate the accuracy of this method.

For the CE/SE Euler solver, highly accurate numer-
ical solutions have been obtained for various flow

problems involving discontinuities, such as shock
waves, contact surfaces and even their interac-

tions[4]. Moreover, applications of the same Euler
solver to computational aeroacoustics (CAA) prob-

lems reveal that the accuracy of the results is com-
parable to that of a 4th-order compact difference

scheme even though the current solver is only 2nd-
order accurate, and the nonreflecting boundary con-

dition can be implemented in a simple way without

involving characteristic variables. It can be applied

to subsonic, transonic, and supersonic flows in the
same form without using the characteristic-based

techniques. Results show that the present solver can

handle both continuous and discontinuous flows very

well[5 -11].
In this paper, a quasi 1-D CE/SE Euler solver

for a nonuniform mesh is developed and used to

solve the benchmark problem in Category l(Inter-

nal Propagation) of the third Computational Aeroa.

coustics (CAA) Workshop. Among the two proposed
problems, one addresses the propagation of sound

waves through a transonic nozzle and another con-
cerns shock-sound interaction in a supersonic noz-

zle. For problem 1, both uniform meshes with con-

stant numerical dissipation models and nonuniform
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meshes with variable numerical dissipation models

are used. Numerical results are presented and com-

pared with the analytical solution. A good agree-
ment is achieved by using a stretched 401 point

mesh. For problem 2, 101 and 201 point uniform

meshes are used and excellent agreements with the

analytical solution are obtained. Further, the nu-

merical solutions obtained by solving the linearized
equations are compared with those obtained by solv-

ing the nonlinear equations for both problems.

2. Governing Equations and Numerical Schemes

In the following, the nonlinear quasi 1D Euler
equations are described in conservative form first,

which is followed by numerical schemes, numerical
results and conclusions.

2.1 Governing Equations

The quasi 1-D Euler equations in conservative

form are expressed as

Ou,,_ Of_
0---_-+ O--.._7= g,,, rn=1,2,3 (1)

in which

ul = p, u2 = pv, u3 = P/('7 - 1) + pv2/2 (2)

and

fl = u2 (3)

f2 = (7- 1)u3 + (3- 7)(n2)2/(2ul) (4)

f'_ = ?'u'2u3/ua - (1/2)(? - 1)(u2)3/(uO 2 (5)

OA 1
(6)g, = -u2 0x A

OA 1
9'2 = -- (U2)2/Ul OX .4 (7)

1
93 = -f_ _ A (S)

where p,v,p, anti 7 are the mass density, velocity,

static pressure, and constant specific heat ratio, re-

spectively, and A is the area of a nozzle.
Let xl = x and x2 = t be the coordinates of a

two-dimensional Euclidean space, E_. The integral

form of Eq. (1) in space-time E2 is

f¢ B,,.dg= f / amdv, m=l,2,3 (9)
(r)

where (i) S(I') is the boundary of an arbitrary space-

time region I" in E2; (ii) f_m = (fm,Um),m = 1,2,3,

are the space-time mass, momentum, and energT

flux vectors, respectively; (iii) dY = da ff with da and

if, respectively, being the area and the outward unit

normal of a surface element on S(I"); and (iv) dv is

the volume of the space-time region l'. Note that (i)

f_,_. dg"is the space-time flux of f_,, leaving the region

1" through the surface element dg; (ii) fly 9mdv is
the volume integration of the source term gm over
the space-time region I'; and (iii) all mathematical

operations can be carried out as though E.., were an

ordinary two-dimensional Euclidean space.

As a preliminary, let

fm,t = Olin/Out, m,l = 1,2,3. (10)

The Jacobian matrix F, which is formed by

f,_,f, m, 1 = 1, 2, 3, is referred to in [1].

Because f,,,,m = 1,2,3 are homogeneous func-
tions of degree one in ul, u2, and u3, we have

3

frn = E fm,t ul.

l=1

(11)

2.2 The 1D Space-Time Nonuniform Mesh

Consider a nonuniform mesh shown in Fig. 1,

in which the solid circles are the grid points and

crosses are the solution points. Assume the spa-

tial coordiimte of the grid points be x d with j =
0, 1/2, 1, 3/2, 2, 5/2. Generally, the grid point j is

not the centroid of the line formed by grid points

j + 1/2 and j - 1/2. Let x_ denote the spatial coor-
dinate of the solution points. Define

x'_ = (xj_,/2 + z_+_/2)/2 (12)

for interior mesh points, while x} = xj for boundary
points.

The definitions of the conservation element(CE)
and solution element(SE) at a grid point j are the

same as those for 1D uniform mesh in [1]. The

flow marching variables are computed at the solution

points, while the grid points are used to construct
CEs and SEs. For later use, we define

and

_--_X; def_- Xj -- Xj_I/2

f defAX = Xj+I/2 -- Xj

/.._Xj de f Xj+I/2 _ Xj--1/2"

(13)

(14)

(15)

2.3 The Quasi 1D Euler a Scheme

For any (x,t) C SE(j,n), Um(X,t), fm(x,t),

and f_m(X,t) are approximated by u_(x,t;j,n),

NASA/TM--2000-209937 2



hm(x,t;j,_), respectively. Theyf;n (x, t; j, n), and _*

will be defined shortly. Let

%,, (x, t; j, n) der . . , . .* = (Um)j+(U .... )j(x--xj)+(U..)j (t--t)
(16)

where (u,.)'_,(u,._)_, and (umt)_ are constant
within SE(j,n). Obviously, they can be consid-
ered as the numerical analogues of the values of

urn, Oum/Ox, and Ou._/cOt at (x_, tn), respectively.

Let (f._)'] and (f_,t)_ denote the values off., and
fro,t, respectively, when u._, rn = 1, 2, 3, respectively,

assume the values of (um)'],m = 1,2,3. For any
rn = 1,2,3, let

3

(fmx) _] = E(f,n,,)?(ut_)? (17)
I=1

and

Because

and

3

" " u (18)
/=1

3 OUg

Of,. _ _ f,,,,:
Ot Ot

g=l

(19)

afro 3 Oue (20)Ox - L.,: ax
f=l

(fmx)'] and (fret) _] can be considered as the numer-
ical analogues of the values of cgfi,,/Ox, and cOfm/Ot

at(x_, t'), respectively. As a result, we define

f_(x,t,g,n)*.. def= (/.,)y+(f...)y(x-xj)+(fmt)y(t-t')
(21)

Because hm = (fro, urn), we also assume that

h*_(x,t;j,n) = (fL(x,t j,n),u,2(x,t;j,n)) (22)

Note that, by their definitions: (i) (f_)y, (f,_,t)Y

are functions of (urn)y, m = 1,2, 3; (ii) (fm.)_ are
// nfunctions of (um)_ and ( m_)j, m = 1,2,3; and

U n(iii) (fmt)y are functions of ( m)j and (umt)j, m =
1,2,3.

Moreover, we assume that, for any (x, t) E SE(j, n),

and for m = 1,2,3,

Ou*_(x,t;j,_O Of_(x,t;j,n)
+ - (gin)y- (23)Ot Oz

Note that Eq. (23) is the numerical analogue of

Eq. (1). With the aid of Eqs. (16) and (21), Eq.

(23) implies that, for any m = 1, 2, 3,

(u,nt)y = -(fmz)? + (9m)y
3

[f:.,lU,x]j + (9m)j (24)
/--1

Since (9,,)j '_ is also a function of _tu,,:j,_" m = 1,2,3,
n ,/ nthus (umt)y is a function of (u,,)j and (*,n,)j • From

this result and the facts stated following Eq. (22),

one concludes that, for each rn = 1,2, 3, there are

only two independent discrete variables, i.e., (m)j

(u,,,_)y, associated with the mesh point (j, n).

Further, the flux h-',*,,is conserved over CE+(j, n),

i.e.,

fS(CE_(j,n))

and

L ..-I/2 ] AtAx_h-',*., dg= [_9.,)j-1/2 + (g'")Y. 4

(25)

fs r, ,n-1/2 ]  t2kx/(cz+(j,,,)) b-',*,,• dg= [tg,,,Jj+_12 + (g,,,)'] 4

(26)

where S(CE+(j,n)) denotes the boundary of

CE+(j,n). Note that Eqs. (25) and (26) are the

numerical analogues of Eq. (9).

_m ff . _ respectively, be the 3xlLet u j,( x)j and g j,
n II ncolumn matrices formed by (u,_)j, (.,.x)j and

(9_)y,m = 1,2,3. Let Ff denote the 3 x 3 Jacobian
matrices formed by (f,_,t)y, m, 1 = 1,2, 3. Define

+ n def Altr.n (27)
(F)j = 4 J

(_q_)y def At- m (28)= --_- gi

With the above preparations, a new set of 3 × 3
matrices will be defined at each mesh point (j,n).

To simplify notation, we will strip from all 3 × 3
matrices involved, their indices j and n. Define

E+l dee Axe-I+ 2F + (29)

Et 2 def ,,_ _ X)_a/2 4-Xj= t x )S +

2(r+) (30)

E_-_ deU Ax]I+ 2F + (31)

E12 def :l. -,Xj-It2 4- Xj t
_ = _xj t -_ xj-_t2)I-

2(F+) 2 (32)

E+ 1 dej Ax+I_2F + (33)

E24- 2 def , +tXj+l/2 4- Xj= t x )S-

2(F+) _ (34)

E2 i dej Axj_I- 2F + (35)

E__2 def ,, +tXj+l/2 4- Xj ¢
= ':-kXj t -_ Xj+l/2)I 4-

2(F+) 2 (36)

NASA/TM--2000-209937 3



whereI is tile 3x3 identity matrix.
Note that, with the aid of Eqs.

be shown that
(12) (15), it can

Xl+l+ x_+, = A.j/, (at)

x_%+ s_%= o (as)

Next we will show how to compute Eqs. (25) and

(26). Because u_(x, t; j, n) is linear in x and t, the

total flux of _*h,,, leaving CE±(j, n) through any one
of the line segments that form its boundary is equal
to the scalar product of the vector ft_,, evaluated at

the centroid of the line, and the normal vector of tile
line. The results of this evaluation can be combined

into the matrix form

[x:, (a - 0_) + xl_].
v- _ 1_-112

[Ell 07 + if+) + "12Uxjj_,/2

and

(39)

__+ _nn

77--1/2
[x;,(_ + 0_) + xi-jx]_+ll_ • (40)

By adding the two matrix equations and using

Eqs. (37) and (38), one concludes that

_-.-t-,_ 1 {[E- ff _ v--'l'_-'l 2(,7
--Y ]j = AX-""S . 11(-_-g )-t-_12UxJj--1/2

(41)
v- _ 1_-1/2

[x;, (,_+ _-) + _,,_, J+,l_ }

i.e., _ can be obtained using an iterative method,
such as Newton iterative method, in terms of the

marching variables at the (n - 1/2)th time level.

Furthermore, it can be seen that the matrices
,--Pn

(Z+)7<J ,r, s = 1,2 and (if+)2' are functions of Uy

oifly, they become known once _ is known. Thus

(fix)2 can be computed using either Eq. (39) or (40).
Consider Eq. (39) for an example. Define

the 2D CE/SE Euler a scheme is formed by Eq. (41)
and

(_.)_ = ,r_"x,j (4.5)

2.4 The Quasi 1D Euler a-e-a-/3 Scheme

The quasi 1D CE/SE Euler a-e-a-fl scheme for a
nonuniform mesh can be derived ill the same way

as that for 1D CE/SE Euler a-e-a-/3 scheme for a
uniform mesh.

Let

t n ,, ,n--l/2 n--l/2

(Um)j±i/2 : tu,,)j+U 2 + (At)/2(u,a)j±U2 (46)

and define

.do,[ o , o ](u,,__)_ = (u,,,)j - (um)_-w2 I Az 7 (4r)

= s+_t_ lax (4s)

and

(u.,_)i = _')" - ('*., .*-w_j+l/2 ' )" iAxj. (49)

Further, we can define

c o c c (_ c

w lu,,_-I um_+ + I_+I _,,,_- (50)
[/rn a"

lu__l _ + I_+1 °

C G_ %[! O.for u_m_- ° + tu_+i > 0, otherwise um_, =
The quasi 1D CE/SE Euler a-e-a>q scheme is

formed by Eq. (41) and

(_)_ = (_x)j + 2_((_)}'- (_'_)y)+,,_((ml')y- (_)j)
(51)

where e, a and/3 are parameters for controlling nu-
merical dissipations. They can be either constants

or variables. With e, c_ and 9 being held constant,
numerical dissipation associated with the present

scheme at a mesh point (j,n) tends to increase as

the local Courant number u2 decreases. To com-
pensate for this effect, e and /3 in Eq. (51) may be

replaced by e(u_) and fl(uj _) which are expressed as

.-__ _ ln-1/2
(gl)}' d_=r[rT1 (ff + y+) + 2al2uxJj-t/2 _ [rtl (ff _ 0_-)]; .

(42)
Then Eq. (39) can be rewritten as

= (&)j. (43)

With assumption that [(E+2)}'] -' exists, we can
have

(l_x)Y -- [(_t2)_]--1 (S1)y. (44)

Note that (ft,)2 can be computed in the similar way
using Eq. (40). Let. (ff_)}_ denote the solution. Then

e(vy) = 0.5 vj _exp(1 - v_) and

_(_;) = V@-' o _<,.,;'_<1. (52)

Note that e(Uj _) and t_(v2), are monotonically in-

creasing function of u_ with e(0) = 0 and ,,'3(0) = 0.
i 1D CE/SE Euler solver with e(v}) and _(vj') in
Eq. (52) was used in [1] to obtain accurate shock
tube solutions with the maximal Courant number

in each numerical simulation ranging from 0.88 to
0.022.

Similarly, the quasi 1D CE/SE Euler solver is

second-order accurate in both space and time. The

NASA/TM--2000-209937 4



stabilityconditionis theCourantnumberlessthan
unity.

3. Numerical Results

For the two problems solved in the following, the

CE/SE quasi 1D Euler solver described previously
for the nonlinear equations is used to compute the

steady-state solution of the nozzle flowfield. For the

simulation of acoustic wave propagation, both the

linear and nonlinear quasi 1D Euler solvers are used

under the same computational conditions. The lin-
ear solver is constructed for the linearized quasi 1D

Euler equations in conservative form. It has the

identical formulation as the nonlinear solver except

the time-marching variables are different. The de-

tails of the linear solver will be described in a sepa-

rate paper. Both the linear and nonlinear numer-
ical solutions are presented. Numerical solutions

of the acoustic wave plotted in all figures are non-

dimensionalized by its amplitude e. In the computa-

tions using a uniform mesh, the constant numerical

dissipation model with e = 0.2, c_ = 0, and _ = 1 is
used for both problems.

3.1. Propagation of Sound Waves through
a Transonic Nozzle

The first problem addresses propagation of sound
waves in a transonic nozzle, in which the local Mach

number of flow near the throat may be close to sonic.

The computation of sound propagating through such

regions presents a challenging problem. The area of
the nozzle is

A(x) =

0.536572 - 0.198086exp (-(ln2)(o._6)_), x > 01.0- 0.661514exp (-(ln 2)(b-_.6)2), x < 0.
(53)

In the uniform region downstream of the throat, the
diameter of the nozzle is D and the main flow is

uniform with Mach number, 2tl_, of 0.4, speed of

sound, a_, and static density, p_. Flow variables

are non-dimensionalized by using ace as the velocity
scale, D as the length scale, D/a_ as the time scale,

p_¢ as the density scale, and p_a_ as the pressure

scale. Thus the mean flow in the uniform region
downstream of the throat is

p=l, v=0.4, p=1/1.4. (54)

The acoustic wave, with angular frequency w = 0.6_r,
is described as

Z x ]p' = p' = _ cos -_tIoo + t) ,

[ " 1v' = -ecos  (1-3,G + t) (55)

where c = 10 -4. It is generated downstream and

propagates upstream through the narrow passage of

the nozzle throat. The computational domain is

-10 _ x <__10. It is recommended that computa-
tions use no more than 400 mesh intervals.

As the first step, the steady-state solution of the

nozzle flow is computed. The initial conditions are

specified using flow properties in the uniform down-

stream region. For imposing the boundary condi-
tions, the back pressure (Phack = 1/1.4) is specified

at the outlet, and the total pressure and total density

are specified at the inlet. The other needed informa-

tion at both the inlet and outlet are obtained using

extrapolation from their neighboring mesh points.

The steady-state solution obtained using a 401 point
uniform mesh with CFL = 0.847 is shown in Fig. 2

in comparison with the exact solution represented

by solid lines. It can be seen that flow properties

are uniform in most region of the nozzle, but change

dramatically near the nozzle throat.
After the steady-state nozzle flowfield is available,

the acoustic wave propagation can be simulated us-

ing the same nonlinear Euler solver. The initial con-

ditions are specified using the steady-state solution
of nozzle flowfield. The boundary condition is dif-

ferent from that used for computing the steady-state

solution. At the outlet, the time-marching variables

are specified as

(u,)y = p + p' (56)

= (p + p')(v + v') (57)

u n p+pl 1
( 3)j -- 3t- 1 + 2(P + p')(v + v') 2. (58)

At the inlet, the non-reflecting boundary condition

is enforced by setting

+'/2 u n , ,.+,/2= ( m)j+l/2, [Urnx)j : 0 (59)

where m = 1,2,3.
Different mesh sizes are tested in the current com-

putation. First, uniform meshes with Ax = 0.05 and

0.025 in the computational domain of -10 < x < 10
are used. Numerical solutions of the acoustic pres-

sure p' at t = 20T are shown in Figs. 3 and 4, respec-

tively and compared with the analytical solution. It

can be seen that the peak values near the throat
and wave pattern upstream of the throat can not be

captured correctly using a 401 point uniform mesih

while a greatly improved result is produced using

an 801 point uniform mesh. The amplitude of the
acoustic wave upstream of the throat is lower than

NASA/TM--2000-209937 5



that givenbytheanalyticalsolution.Further,the
correspondingsolutionsobtainedwithAa:= 0.0125
in thecomputationaldomainof -5 _<x < 5 are

shown in Fig. 5. Although the peak values are
still not the same as the analytical solution, the pro-

files of the p' both upstream and downstream of the

throat agree very well with the analytical solution.

Ill order to reduce the number of grid points, a 401
point nonuniform mesh that cluster near tile throat

is used. The ratio of the largest to smallest mesh in-
terval is around 10 with Axmi_ = 0.0047. The vari-

" and 3j _ described in Eq. (52), and constantable ej
a = 0 are used in tile computation. The obtained

acoustic pressure at t = 20T with CFL = 0.9084

is shown in Fig. 6 which is hearly similar to that

obtained using an 801 point uniform mesh in the

domain of -10 < x < 10. Further improvement can

be made in the future by reducing tile numerical dis-
sipations or using a more stretched mesh. Its conver-

gence to the time-period solution is shown in Fig. 7.

Under the same computational conditions and mesh,
the corresponding solution obtained using e = 10 -a

is plotted in Fig. 8 showing skewness upstream of
the throat. It can be concluded that the amplitude

of the acoustic wave should be small enough to avoid
the nonlinearity when a nonlinear scheme is used to

obtain the linear solution. In the present computa-

tion using a nonlinear solver, the steady-state solu-
tions converge to 10 7 and e = 10 -4 is used.

For the linear solver, the amplitude of the acous-

tic wave is set to 1 and the steady-state solution

obtained by using the nonlinear solver is used in the
computation. All the three uniform meshes used for
the nonlinear solver described above are tested with

the linear solver. The linear solutions are very simi-
lar to the nonlinear solutions. The solution obtained

using an 801 point uniform mesh ill the domain of

-10 < x < 10 is shown in Fig. 9 as an example. The

nonlinear solution is slightly better than the linear

solution under the same computational conditions.

3.2 Shock-Sound Interaction

In this problem, the same nozzle geometry from

the previous problem is used, but here there is a su-

personic shock downstream of the throat. All quan-

tities are non-dimensionalized using the upstream
values. The Math mlmber at the inlet, Mo_, is

0.2006533 and the back pressure, P_ck, is 0.6071752.

Following the same steps described in the first prob-

lem, the steady-state nozzle flowfield is computed
and used as the initial condition for tile sound-shock

interaction simulation. The acoustic wave is de-

scribed as

p' = p' = v' = esin cz(_- --_/_. + t) (60)

where c and w have the same values as that in the

first problem. At the inlet, the time-marching vari-

ables are specified using Eqs. (56)-(58), while at the
outlet, for rn = 1, 2, 3,

( m)y = = 0 (61)

are used as the non-reflecting boundary conditions.

Uniform meshes with 101 and 201 grid points are

used for this problem. The steady-state solution ob-

tained using a 101 point uniform mesh is shown in
Fig. 10 and compared with the analytical solution

represented by solid lines. Numerical solutions of

tile acoustic wave obtained using 101 and 201 point

uniform meshes are shown in Fig. I1, in which only
the analytical solution of p' is plotted for a com-

parison. The analytical solutions of the density and

velocity are not available. It can be seen that the so-
lution obtained on a 101 point uniform mesh is ve_"

close to the analytical solution and that obtained

on a 201 point uniform mesh appears to graphically
match the analytical solution. A very solid conver-

gence to the time-period solution is demonstrated in

Fig. 12 for the coarse mesh. Further, the acoustic

pressure at. the outlet in one time period is plotted

in Fig. 13 along with the analytical solution show-
ing an excellent agreement. The linear solution is
ahnost identical to the nonlinear solution which is

shown in Fig. 14 for a 101 point uniform mesh.

4. Conclusions

The quasi 1-D CE/SE Euler solver for a nonuni-

form mesh is developed and applied to simulate the
propagation of sound waves and shock-sound inter-

action in a nozzle. For problem 1, a satisfactory nu-

merical result is obtained using a nonuniform mesh

with 401 grid points. For problem 2, an excellent
agreement between the numerical results obtained

on a 101 point uniform mesh and the analytical solu-

tion is achieved. It is demonstrated that the CE/SE

method is capable of soMng aeroacoustic problems

with/without shock waves in a simple way. No spe-
cial techniques are used for shock waves, and acous-

tics waves and shock waves can be captured concur-

rently within the computational domain.
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